Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.764
Filtrar
1.
Genesis ; 62(2): e23594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590146

RESUMO

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Mucosa Olfatória , Bulbo Olfatório , Axônios/metabolismo , Expressão Gênica
2.
Acta Neurobiol Exp (Wars) ; 84(1): 80-88, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587321

RESUMO

Diffuse axonal injury (DAI), one of the most common and devastating type of traumatic brain injury, is the result of the shear force on axons due to severe rotational acceleration and deceleration. Neurogranin (NRGN) is a postsynaptic protein secreted by excitatory neurons, and synaptic dysfunction can alter extracellular NRGN levels. In this study, we examined NRGN levels in serum and cerebrospinal fluid (CSF) after experimental DAI in terms of their diagnostic value. Experimental DAI was induced using the Marmarou technique in male Wistar albino rats. Serum and CSF NRGN levels of the sham group, one­hour, six­hour, 24­hour, and 72­hour post­DAI groups were measured by ELISA method. DAI was verified by staining with hematoxylin­eosin and ß­amyloid precursor protein in the rat brain samples. While no histopathological and immunohistochemical changes were observed in the early hours of the post­DAI groups, the staining of the ß­APP visibly increased over time, with positivity being most frequent and intense in the 72­hour group. It was found that serum NRGN levels were significantly lower in the 6­hour group than in the sham group. The serum NRGN levels in the 24­hour group were significantly higher than those in the sham group. This study showed a dichotomy of post­DAI serum NRGN levels in consecutive time periods. NRGN levels in CSF were higher in the one­hour group than in the sham group and returned to baseline by 72 hours, although not significantly. Our study provides an impression of serum and CSF NRGN levels in a rat DAI model in consecutive time periods. Further studies are needed to understand the diagnostic value of NRGN.


Assuntos
Lesão Axonal Difusa , Neurogranina , Ratos , Masculino , Animais , Neurogranina/metabolismo , Ratos Wistar , Lesão Axonal Difusa/metabolismo , Lesão Axonal Difusa/patologia , Neurônios/metabolismo , Axônios/metabolismo
3.
Genesis ; 62(1): e23586, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38593162

RESUMO

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Axônios/metabolismo , Mamíferos
4.
PLoS One ; 19(4): e0300539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574058

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Assuntos
Actinas , Axônios , Axônios/metabolismo , Nocodazol/farmacologia , Actinas/metabolismo , Zíper de Leucina , Regeneração Nervosa/fisiologia , Citoesqueleto/metabolismo , Homeostase , MAP Quinase Quinase Quinases/genética
5.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637413

RESUMO

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Neural/genética , Diabetes Mellitus Experimental/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Axônios/metabolismo , Axônios/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632795

RESUMO

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Assuntos
Bainha de Mielina , Condução Nervosa , Humanos , Condução Nervosa/fisiologia , Bainha de Mielina/fisiologia , Axônios/metabolismo , Transporte de Íons , Simulação por Computador , Potenciais de Ação/fisiologia
7.
PLoS One ; 19(4): e0302251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635746

RESUMO

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.


Assuntos
NAD , Degeneração Walleriana , Animais , Humanos , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , NAD/metabolismo , Drosophila melanogaster/metabolismo , Axônios/metabolismo , Bactérias/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
8.
Int J Med Sci ; 21(4): 725-731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464830

RESUMO

Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.


Assuntos
Axônios , Traumatismos da Medula Espinal , Humanos , Axônios/metabolismo , Histonas/metabolismo , Acetilação , Regeneração Nervosa , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapêutico
9.
Orphanet J Rare Dis ; 19(1): 138, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549180

RESUMO

Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.


Assuntos
Adrenoleucodistrofia , Doenças da Medula Espinal , Humanos , Adrenoleucodistrofia/patologia , Axônios/metabolismo , Axônios/patologia
10.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553447

RESUMO

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Assuntos
Galanina , Vibrissas , Animais , Humanos , Camundongos , Axônios/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrissas/fisiologia
11.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540364

RESUMO

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Assuntos
Orientação de Axônios , Transtornos Mentais , Humanos , Orientação de Axônios/genética , Netrina-1/genética , Netrina-1/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Axônios/metabolismo , Transtornos Mentais/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542133

RESUMO

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurotoxinas/farmacologia , Axônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo
13.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548335

RESUMO

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Assuntos
Doenças Neurodegenerativas , Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Axônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Regeneração Nervosa/fisiologia , Doenças do Nervo Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Sobrevivência Celular/fisiologia
14.
Nat Commun ; 15(1): 2142, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459070

RESUMO

Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.


Assuntos
Neurônios , Células Piramidais , Neurônios/metabolismo , Células Piramidais/fisiologia , Hipocampo , Axônios/metabolismo , Mitocôndrias/metabolismo , Dendritos/fisiologia
15.
Cell Rep ; 43(3): 113904, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457342

RESUMO

The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.


Assuntos
Epilepsia , Canais de Potássio , Humanos , Axônios/metabolismo , Epilepsia/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio , Animais , Camundongos
16.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473838

RESUMO

The occurrence, inhibitory modulation, and trophic effects of GABA have been identified in the peripheral sympathetic nervous system. We have demonstrated that GABA and acetylcholine (ACh) may colocalize in the same axonal varicosities or be segregated into separate ones in the rat superior cervical ganglia (SCG). Neurotransmitter segregation varies with age and the presence of neurotrophic factors. Here, we explored age-dependent changes in the occurrence and segregation of GABA and ACh in rats ranging from 2 weeks old (wo) to 12 months old or older. Using immunohistochemistry, we characterized the expression of L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine transporter (VAChT) in the rat SCG at 2, 4, 8, 12 wo and 12 months old or older. Our findings revealed that GAD67 was greater at 2 wo compared with the other ages, whereas VAChT levels were greater at 4 wo than at 12 wo and 12 months old or older. The segregation of these neurotransmitters was more pronounced at 2 and 4 wo. We observed a caudo-rostral gradient of segregation degree at 8 and 12 wo. Data point out that the occurrence and segregation of GABA and ACh exhibit developmental adaptative changes throughout the lifetime of rats. We hypothesize that during the early postnatal period, the increase in GABA and GABA-ACh segregation promotes the release of GABA alone which might play a role in trophic actions.


Assuntos
Acetilcolina , Gânglio Cervical Superior , Ratos , Animais , Acetilcolina/metabolismo , Axônios/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
Methods Mol Biol ; 2754: 533-549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512688

RESUMO

Tau pathology is a major hallmark of many neurodegenerative diseases summarized under the term tauopathies. In most of these disorders,  such as Alzheimer's disease, the neuronal axonal microtubule-binding Tau protein becomes mislocalized to the somatodendritic compartment. In human disease, this missorting of Tau is accompanied by an abnormally high phosphorylation state of the Tau protein, and several downstream pathological consequences (e.g., loss of microtubules, degradation of postsynaptic spines, impaired synaptic transmission, neuronal death). While some mechanisms of Tau sorting, missorting, and associated pathologies have been addressed in rodent models, few studies have addressed human Tau in physiological disease-relevant human neurons. Thus, suitable human-derived in vitro models are necessary. This protocol provides a simple step-by-step protocol for generating homogeneous cultures of cortical glutamatergic neurons using an engineered Ngn2 transgene-carrying WTC11 iPSC line. We further demonstrate strategies to improve neuronal maturity, that is, synapse formation, Tau isoform expression, and neuronal activity by co-culturing hiPSC-derived glutamatergic neurons with mouse-derived astrocytes. Finally, we describe a simple protocol for high-efficiency lentiviral transduction of hiPSC-derived neurons at almost all stages of differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Neurônios/metabolismo , Axônios/metabolismo , Diferenciação Celular , Células Cultivadas
18.
J Comp Neurol ; 532(3): e25599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488687

RESUMO

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.


Assuntos
Síndrome de Kallmann , Humanos , Animais , Camundongos , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Encéfalo/metabolismo , Axônios/metabolismo , Bulbo Olfatório/metabolismo , Movimento Celular/fisiologia
19.
Nat Commun ; 15(1): 2487, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514619

RESUMO

The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo
20.
Nat Commun ; 15(1): 1877, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461182

RESUMO

Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.


Assuntos
Cones de Crescimento , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Camundongos , Animais , Cones de Crescimento/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Neurogênese , Axônios/metabolismo , Sulfatos de Condroitina/metabolismo , Encéfalo/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...